

Individual selection of the type for assembly in the existing chain drive ANSI Series

If you desire to select the ROLL-RING chain tensioner for an already existing chain drive, independent of the transmission ratio, we recommend you to proceed as follows:

Measure in the area of the intersection between the inner crossing tangents of the chain drive the widest distance of the strands which have been pulled apart, via the centers of the chain joints (e.g.: $D^* = 3.347$).

Measure the inner width between the sprockets (e.g.: A*=12.205´´)

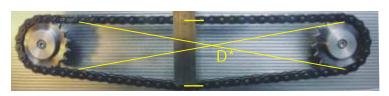
Determine the ANSI No. of the chain (e.g. 40).

Enter with this ANSI No. in the table "Installation and final dimensions for ROLL-RING chain tensioners/series ANSI" (to the right).

Select the appropriate group in the column "ANSI No." (e.g. 40).

Specify the article group (108 026 01, 108 030 01, 108 034 01).

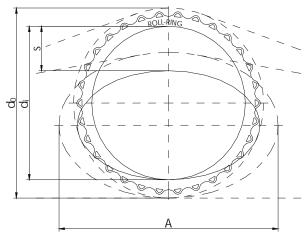
Check within this article group to determine which of the articles fulfils the following values measured by you for A* and D* of the chain drive:


$D^* > D$ and $D^* < d_o$ (self-holding restriction) and $A^{*3}A$ (working area restriction).

Articles fulfilling this condition are suitable for your chain drive. For example the article 108 026 01 fulfills these conditions.

This means that you have determined the matching article. If there are several types with various numbers of teeth within the article group, you should decide in favor of the article with the largest number of teeth.

The ideal assembly position is in the area of the intersection of the inner tangents.



Installation and final dimensions for the ROLL-RING chain tensioner/series ANSI:

ANSI-No.	Article	d _°	$\mathbf{d}_{\scriptscriptstyle i}$	s	Α	D=d ₀ -s
35	806 030 01	3.539	3.024	1.063	4.449	2.476
40	108 026 01	4.154	3.445	1.063	5.346	3.091
40	108 030 01	4.783	4.000	1.181	6.362	3.602
40	108 034 01	5.413	4.543	1.181	6.496	4.232
40	108 430 01	4.783	4.000	1.181	6.362	3.602
50	110 026 01	5.055	4.134	1.102	6.024	3.953
50 50	110 020 01	5.827	4.906	1.299	6.969	4.528
50	110 030 01	6.693	5.551	1.496	8.543	5.197
60	440 000 04	C 100	E 004	4 070	0.040	4 704
60	112 026 01	6.102	5.024	1.378	8.248	4.724
60	112 030 01	7.173	6.028	1.772	9.528	5.401
60	112 034 01	8.169	6.673	1.772	10.433	6.397
80	116 026 01	8.150	6.575	1.772	10.591	6.378
80	816 030 01	9.528	7.874	1.969	12.402	7.559
100	120 030 01	11.957	10.094	2.560	15.354	9.397

All values in inches. Value "A" includes a safety distance to the sprockets

